Copied to
clipboard

G = C23.6D26order 416 = 25·13

6th non-split extension by C23 of D26 acting via D26/C13=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.6D26, Dic13.5D4, (C2×C4).8D26, C22⋊C45D13, C26.21(C2×D4), C2.10(D4×D13), D26⋊C46C2, (C2×Dic26)⋊3C2, C132(C4.4D4), C23.D135C2, (C4×Dic13)⋊12C2, C26.10(C4○D4), (C2×C52).54C22, (C2×C26).26C23, C2.9(D42D13), C2.12(D525C2), (C22×C26).15C22, (C22×D13).4C22, C22.44(C22×D13), (C2×Dic13).30C22, (C13×C22⋊C4)⋊7C2, (C2×C13⋊D4).4C2, SmallGroup(416,106)

Series: Derived Chief Lower central Upper central

C1C2×C26 — C23.6D26
C1C13C26C2×C26C22×D13D26⋊C4 — C23.6D26
C13C2×C26 — C23.6D26
C1C22C22⋊C4

Generators and relations for C23.6D26
 G = < a,b,c,d,e | a2=b2=c2=1, d26=b, e2=cb=bc, eae-1=ab=ba, dad-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=cd25 >

Subgroups: 536 in 76 conjugacy classes, 31 normal (29 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C13, C42, C22⋊C4, C22⋊C4, C2×D4, C2×Q8, D13, C26, C26, C4.4D4, Dic13, Dic13, C52, D26, C2×C26, C2×C26, Dic26, C2×Dic13, C13⋊D4, C2×C52, C22×D13, C22×C26, C4×Dic13, D26⋊C4, C23.D13, C13×C22⋊C4, C2×Dic26, C2×C13⋊D4, C23.6D26
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, D13, C4.4D4, D26, C22×D13, D525C2, D4×D13, D42D13, C23.6D26

Smallest permutation representation of C23.6D26
On 208 points
Generators in S208
(1 116)(2 77)(3 118)(4 79)(5 120)(6 81)(7 122)(8 83)(9 124)(10 85)(11 126)(12 87)(13 128)(14 89)(15 130)(16 91)(17 132)(18 93)(19 134)(20 95)(21 136)(22 97)(23 138)(24 99)(25 140)(26 101)(27 142)(28 103)(29 144)(30 53)(31 146)(32 55)(33 148)(34 57)(35 150)(36 59)(37 152)(38 61)(39 154)(40 63)(41 156)(42 65)(43 106)(44 67)(45 108)(46 69)(47 110)(48 71)(49 112)(50 73)(51 114)(52 75)(54 164)(56 166)(58 168)(60 170)(62 172)(64 174)(66 176)(68 178)(70 180)(72 182)(74 184)(76 186)(78 188)(80 190)(82 192)(84 194)(86 196)(88 198)(90 200)(92 202)(94 204)(96 206)(98 208)(100 158)(102 160)(104 162)(105 175)(107 177)(109 179)(111 181)(113 183)(115 185)(117 187)(119 189)(121 191)(123 193)(125 195)(127 197)(129 199)(131 201)(133 203)(135 205)(137 207)(139 157)(141 159)(143 161)(145 163)(147 165)(149 167)(151 169)(153 171)(155 173)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)(53 79)(54 80)(55 81)(56 82)(57 83)(58 84)(59 85)(60 86)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 97)(72 98)(73 99)(74 100)(75 101)(76 102)(77 103)(78 104)(105 131)(106 132)(107 133)(108 134)(109 135)(110 136)(111 137)(112 138)(113 139)(114 140)(115 141)(116 142)(117 143)(118 144)(119 145)(120 146)(121 147)(122 148)(123 149)(124 150)(125 151)(126 152)(127 153)(128 154)(129 155)(130 156)(157 183)(158 184)(159 185)(160 186)(161 187)(162 188)(163 189)(164 190)(165 191)(166 192)(167 193)(168 194)(169 195)(170 196)(171 197)(172 198)(173 199)(174 200)(175 201)(176 202)(177 203)(178 204)(179 205)(180 206)(181 207)(182 208)
(1 186)(2 187)(3 188)(4 189)(5 190)(6 191)(7 192)(8 193)(9 194)(10 195)(11 196)(12 197)(13 198)(14 199)(15 200)(16 201)(17 202)(18 203)(19 204)(20 205)(21 206)(22 207)(23 208)(24 157)(25 158)(26 159)(27 160)(28 161)(29 162)(30 163)(31 164)(32 165)(33 166)(34 167)(35 168)(36 169)(37 170)(38 171)(39 172)(40 173)(41 174)(42 175)(43 176)(44 177)(45 178)(46 179)(47 180)(48 181)(49 182)(50 183)(51 184)(52 185)(53 145)(54 146)(55 147)(56 148)(57 149)(58 150)(59 151)(60 152)(61 153)(62 154)(63 155)(64 156)(65 105)(66 106)(67 107)(68 108)(69 109)(70 110)(71 111)(72 112)(73 113)(74 114)(75 115)(76 116)(77 117)(78 118)(79 119)(80 120)(81 121)(82 122)(83 123)(84 124)(85 125)(86 126)(87 127)(88 128)(89 129)(90 130)(91 131)(92 132)(93 133)(94 134)(95 135)(96 136)(97 137)(98 138)(99 139)(100 140)(101 141)(102 142)(103 143)(104 144)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208)
(1 26 160 185)(2 184 161 25)(3 24 162 183)(4 182 163 23)(5 22 164 181)(6 180 165 21)(7 20 166 179)(8 178 167 19)(9 18 168 177)(10 176 169 17)(11 16 170 175)(12 174 171 15)(13 14 172 173)(27 52 186 159)(28 158 187 51)(29 50 188 157)(30 208 189 49)(31 48 190 207)(32 206 191 47)(33 46 192 205)(34 204 193 45)(35 44 194 203)(36 202 195 43)(37 42 196 201)(38 200 197 41)(39 40 198 199)(53 72 119 138)(54 137 120 71)(55 70 121 136)(56 135 122 69)(57 68 123 134)(58 133 124 67)(59 66 125 132)(60 131 126 65)(61 64 127 130)(62 129 128 63)(73 104 139 118)(74 117 140 103)(75 102 141 116)(76 115 142 101)(77 100 143 114)(78 113 144 99)(79 98 145 112)(80 111 146 97)(81 96 147 110)(82 109 148 95)(83 94 149 108)(84 107 150 93)(85 92 151 106)(86 105 152 91)(87 90 153 156)(88 155 154 89)

G:=sub<Sym(208)| (1,116)(2,77)(3,118)(4,79)(5,120)(6,81)(7,122)(8,83)(9,124)(10,85)(11,126)(12,87)(13,128)(14,89)(15,130)(16,91)(17,132)(18,93)(19,134)(20,95)(21,136)(22,97)(23,138)(24,99)(25,140)(26,101)(27,142)(28,103)(29,144)(30,53)(31,146)(32,55)(33,148)(34,57)(35,150)(36,59)(37,152)(38,61)(39,154)(40,63)(41,156)(42,65)(43,106)(44,67)(45,108)(46,69)(47,110)(48,71)(49,112)(50,73)(51,114)(52,75)(54,164)(56,166)(58,168)(60,170)(62,172)(64,174)(66,176)(68,178)(70,180)(72,182)(74,184)(76,186)(78,188)(80,190)(82,192)(84,194)(86,196)(88,198)(90,200)(92,202)(94,204)(96,206)(98,208)(100,158)(102,160)(104,162)(105,175)(107,177)(109,179)(111,181)(113,183)(115,185)(117,187)(119,189)(121,191)(123,193)(125,195)(127,197)(129,199)(131,201)(133,203)(135,205)(137,207)(139,157)(141,159)(143,161)(145,163)(147,165)(149,167)(151,169)(153,171)(155,173), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)(111,137)(112,138)(113,139)(114,140)(115,141)(116,142)(117,143)(118,144)(119,145)(120,146)(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)(129,155)(130,156)(157,183)(158,184)(159,185)(160,186)(161,187)(162,188)(163,189)(164,190)(165,191)(166,192)(167,193)(168,194)(169,195)(170,196)(171,197)(172,198)(173,199)(174,200)(175,201)(176,202)(177,203)(178,204)(179,205)(180,206)(181,207)(182,208), (1,186)(2,187)(3,188)(4,189)(5,190)(6,191)(7,192)(8,193)(9,194)(10,195)(11,196)(12,197)(13,198)(14,199)(15,200)(16,201)(17,202)(18,203)(19,204)(20,205)(21,206)(22,207)(23,208)(24,157)(25,158)(26,159)(27,160)(28,161)(29,162)(30,163)(31,164)(32,165)(33,166)(34,167)(35,168)(36,169)(37,170)(38,171)(39,172)(40,173)(41,174)(42,175)(43,176)(44,177)(45,178)(46,179)(47,180)(48,181)(49,182)(50,183)(51,184)(52,185)(53,145)(54,146)(55,147)(56,148)(57,149)(58,150)(59,151)(60,152)(61,153)(62,154)(63,155)(64,156)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,26,160,185)(2,184,161,25)(3,24,162,183)(4,182,163,23)(5,22,164,181)(6,180,165,21)(7,20,166,179)(8,178,167,19)(9,18,168,177)(10,176,169,17)(11,16,170,175)(12,174,171,15)(13,14,172,173)(27,52,186,159)(28,158,187,51)(29,50,188,157)(30,208,189,49)(31,48,190,207)(32,206,191,47)(33,46,192,205)(34,204,193,45)(35,44,194,203)(36,202,195,43)(37,42,196,201)(38,200,197,41)(39,40,198,199)(53,72,119,138)(54,137,120,71)(55,70,121,136)(56,135,122,69)(57,68,123,134)(58,133,124,67)(59,66,125,132)(60,131,126,65)(61,64,127,130)(62,129,128,63)(73,104,139,118)(74,117,140,103)(75,102,141,116)(76,115,142,101)(77,100,143,114)(78,113,144,99)(79,98,145,112)(80,111,146,97)(81,96,147,110)(82,109,148,95)(83,94,149,108)(84,107,150,93)(85,92,151,106)(86,105,152,91)(87,90,153,156)(88,155,154,89)>;

G:=Group( (1,116)(2,77)(3,118)(4,79)(5,120)(6,81)(7,122)(8,83)(9,124)(10,85)(11,126)(12,87)(13,128)(14,89)(15,130)(16,91)(17,132)(18,93)(19,134)(20,95)(21,136)(22,97)(23,138)(24,99)(25,140)(26,101)(27,142)(28,103)(29,144)(30,53)(31,146)(32,55)(33,148)(34,57)(35,150)(36,59)(37,152)(38,61)(39,154)(40,63)(41,156)(42,65)(43,106)(44,67)(45,108)(46,69)(47,110)(48,71)(49,112)(50,73)(51,114)(52,75)(54,164)(56,166)(58,168)(60,170)(62,172)(64,174)(66,176)(68,178)(70,180)(72,182)(74,184)(76,186)(78,188)(80,190)(82,192)(84,194)(86,196)(88,198)(90,200)(92,202)(94,204)(96,206)(98,208)(100,158)(102,160)(104,162)(105,175)(107,177)(109,179)(111,181)(113,183)(115,185)(117,187)(119,189)(121,191)(123,193)(125,195)(127,197)(129,199)(131,201)(133,203)(135,205)(137,207)(139,157)(141,159)(143,161)(145,163)(147,165)(149,167)(151,169)(153,171)(155,173), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)(111,137)(112,138)(113,139)(114,140)(115,141)(116,142)(117,143)(118,144)(119,145)(120,146)(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)(129,155)(130,156)(157,183)(158,184)(159,185)(160,186)(161,187)(162,188)(163,189)(164,190)(165,191)(166,192)(167,193)(168,194)(169,195)(170,196)(171,197)(172,198)(173,199)(174,200)(175,201)(176,202)(177,203)(178,204)(179,205)(180,206)(181,207)(182,208), (1,186)(2,187)(3,188)(4,189)(5,190)(6,191)(7,192)(8,193)(9,194)(10,195)(11,196)(12,197)(13,198)(14,199)(15,200)(16,201)(17,202)(18,203)(19,204)(20,205)(21,206)(22,207)(23,208)(24,157)(25,158)(26,159)(27,160)(28,161)(29,162)(30,163)(31,164)(32,165)(33,166)(34,167)(35,168)(36,169)(37,170)(38,171)(39,172)(40,173)(41,174)(42,175)(43,176)(44,177)(45,178)(46,179)(47,180)(48,181)(49,182)(50,183)(51,184)(52,185)(53,145)(54,146)(55,147)(56,148)(57,149)(58,150)(59,151)(60,152)(61,153)(62,154)(63,155)(64,156)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,26,160,185)(2,184,161,25)(3,24,162,183)(4,182,163,23)(5,22,164,181)(6,180,165,21)(7,20,166,179)(8,178,167,19)(9,18,168,177)(10,176,169,17)(11,16,170,175)(12,174,171,15)(13,14,172,173)(27,52,186,159)(28,158,187,51)(29,50,188,157)(30,208,189,49)(31,48,190,207)(32,206,191,47)(33,46,192,205)(34,204,193,45)(35,44,194,203)(36,202,195,43)(37,42,196,201)(38,200,197,41)(39,40,198,199)(53,72,119,138)(54,137,120,71)(55,70,121,136)(56,135,122,69)(57,68,123,134)(58,133,124,67)(59,66,125,132)(60,131,126,65)(61,64,127,130)(62,129,128,63)(73,104,139,118)(74,117,140,103)(75,102,141,116)(76,115,142,101)(77,100,143,114)(78,113,144,99)(79,98,145,112)(80,111,146,97)(81,96,147,110)(82,109,148,95)(83,94,149,108)(84,107,150,93)(85,92,151,106)(86,105,152,91)(87,90,153,156)(88,155,154,89) );

G=PermutationGroup([[(1,116),(2,77),(3,118),(4,79),(5,120),(6,81),(7,122),(8,83),(9,124),(10,85),(11,126),(12,87),(13,128),(14,89),(15,130),(16,91),(17,132),(18,93),(19,134),(20,95),(21,136),(22,97),(23,138),(24,99),(25,140),(26,101),(27,142),(28,103),(29,144),(30,53),(31,146),(32,55),(33,148),(34,57),(35,150),(36,59),(37,152),(38,61),(39,154),(40,63),(41,156),(42,65),(43,106),(44,67),(45,108),(46,69),(47,110),(48,71),(49,112),(50,73),(51,114),(52,75),(54,164),(56,166),(58,168),(60,170),(62,172),(64,174),(66,176),(68,178),(70,180),(72,182),(74,184),(76,186),(78,188),(80,190),(82,192),(84,194),(86,196),(88,198),(90,200),(92,202),(94,204),(96,206),(98,208),(100,158),(102,160),(104,162),(105,175),(107,177),(109,179),(111,181),(113,183),(115,185),(117,187),(119,189),(121,191),(123,193),(125,195),(127,197),(129,199),(131,201),(133,203),(135,205),(137,207),(139,157),(141,159),(143,161),(145,163),(147,165),(149,167),(151,169),(153,171),(155,173)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52),(53,79),(54,80),(55,81),(56,82),(57,83),(58,84),(59,85),(60,86),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,97),(72,98),(73,99),(74,100),(75,101),(76,102),(77,103),(78,104),(105,131),(106,132),(107,133),(108,134),(109,135),(110,136),(111,137),(112,138),(113,139),(114,140),(115,141),(116,142),(117,143),(118,144),(119,145),(120,146),(121,147),(122,148),(123,149),(124,150),(125,151),(126,152),(127,153),(128,154),(129,155),(130,156),(157,183),(158,184),(159,185),(160,186),(161,187),(162,188),(163,189),(164,190),(165,191),(166,192),(167,193),(168,194),(169,195),(170,196),(171,197),(172,198),(173,199),(174,200),(175,201),(176,202),(177,203),(178,204),(179,205),(180,206),(181,207),(182,208)], [(1,186),(2,187),(3,188),(4,189),(5,190),(6,191),(7,192),(8,193),(9,194),(10,195),(11,196),(12,197),(13,198),(14,199),(15,200),(16,201),(17,202),(18,203),(19,204),(20,205),(21,206),(22,207),(23,208),(24,157),(25,158),(26,159),(27,160),(28,161),(29,162),(30,163),(31,164),(32,165),(33,166),(34,167),(35,168),(36,169),(37,170),(38,171),(39,172),(40,173),(41,174),(42,175),(43,176),(44,177),(45,178),(46,179),(47,180),(48,181),(49,182),(50,183),(51,184),(52,185),(53,145),(54,146),(55,147),(56,148),(57,149),(58,150),(59,151),(60,152),(61,153),(62,154),(63,155),(64,156),(65,105),(66,106),(67,107),(68,108),(69,109),(70,110),(71,111),(72,112),(73,113),(74,114),(75,115),(76,116),(77,117),(78,118),(79,119),(80,120),(81,121),(82,122),(83,123),(84,124),(85,125),(86,126),(87,127),(88,128),(89,129),(90,130),(91,131),(92,132),(93,133),(94,134),(95,135),(96,136),(97,137),(98,138),(99,139),(100,140),(101,141),(102,142),(103,143),(104,144)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208)], [(1,26,160,185),(2,184,161,25),(3,24,162,183),(4,182,163,23),(5,22,164,181),(6,180,165,21),(7,20,166,179),(8,178,167,19),(9,18,168,177),(10,176,169,17),(11,16,170,175),(12,174,171,15),(13,14,172,173),(27,52,186,159),(28,158,187,51),(29,50,188,157),(30,208,189,49),(31,48,190,207),(32,206,191,47),(33,46,192,205),(34,204,193,45),(35,44,194,203),(36,202,195,43),(37,42,196,201),(38,200,197,41),(39,40,198,199),(53,72,119,138),(54,137,120,71),(55,70,121,136),(56,135,122,69),(57,68,123,134),(58,133,124,67),(59,66,125,132),(60,131,126,65),(61,64,127,130),(62,129,128,63),(73,104,139,118),(74,117,140,103),(75,102,141,116),(76,115,142,101),(77,100,143,114),(78,113,144,99),(79,98,145,112),(80,111,146,97),(81,96,147,110),(82,109,148,95),(83,94,149,108),(84,107,150,93),(85,92,151,106),(86,105,152,91),(87,90,153,156),(88,155,154,89)]])

74 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H13A···13F26A···26R26S···26AD52A···52X
order1222224444444413···1326···2626···2652···52
size111145222426262626522···22···24···44···4

74 irreducible representations

dim111111122222244
type++++++++++++-
imageC1C2C2C2C2C2C2D4C4○D4D13D26D26D525C2D4×D13D42D13
kernelC23.6D26C4×Dic13D26⋊C4C23.D13C13×C22⋊C4C2×Dic26C2×C13⋊D4Dic13C26C22⋊C4C2×C4C23C2C2C2
# reps11211112461262466

Matrix representation of C23.6D26 in GL4(𝔽53) generated by

144700
63900
0010
002352
,
52000
05200
00520
00052
,
1000
0100
00520
00052
,
432200
312200
004742
00136
,
224300
223100
00611
004547
G:=sub<GL(4,GF(53))| [14,6,0,0,47,39,0,0,0,0,1,23,0,0,0,52],[52,0,0,0,0,52,0,0,0,0,52,0,0,0,0,52],[1,0,0,0,0,1,0,0,0,0,52,0,0,0,0,52],[43,31,0,0,22,22,0,0,0,0,47,13,0,0,42,6],[22,22,0,0,43,31,0,0,0,0,6,45,0,0,11,47] >;

C23.6D26 in GAP, Magma, Sage, TeX

C_2^3._6D_{26}
% in TeX

G:=Group("C2^3.6D26");
// GroupNames label

G:=SmallGroup(416,106);
// by ID

G=gap.SmallGroup(416,106);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-13,217,55,506,188,13829]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^26=b,e^2=c*b=b*c,e*a*e^-1=a*b=b*a,d*a*d^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^25>;
// generators/relations

׿
×
𝔽